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Basic matrix operations

� k

[
a1

a2

]
=

[
ka1

ka2

]

�

[
a b

] [c
d

]
=
[
ac + bd

]

�

[
1 0

0 1

][
a b

c d

]
=

[
a b

c d

]

�

[
a b

c d

][
1 0

0 1

]
=

[
a b

c d

]
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Matrix multiplication

� Let An×m and Bm×k , then (AB)n×k

� Let An×m and Bm×k , then (BA) “conformability error”
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Transpose and inverse of a matrix

� Transpose of Product (AB)′ = B ′A′ and (ABC )′ = C ′B ′A′

� Inverse of Product (AB)−1 = B−1A−1 and (ABC )−1 = C−1B−1A−1

� Transpose of an inverse equals inverse of a transpose (D−1)′ = (D ′)−1
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Law of Iterated Expectations (LIE): A useful trick

� Formally: The unconditional expectation of a random variable is equal to the

expectation of the conditional expectation of the random variable conditional on

some other random variable

E(Y ) = E(E[Y |X ])

� Informally: the weighted average of the conditional averages is the unconditional

average
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Example of LIE

� Say want average wage but only know average wage by education level

� LIE says we get the former by taking conditional expectations by education level

and combining them (properly weighted)

E[Wage] = E(E[Wage|Education])

=
∑

Educationi

Pr(Educationi ) · E [Wage|Educationi ]
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Person Gender IQ

1 M 120

2 M 115

3 M 110

4 F 130

5 F 125

6 F 120

� E[IQ] = 120

� E[IQ | Male] = 115; E[IQ | Female] = 125

� LIE: E ( E [ IQ | Sex ] ) = (0.5)×115 + (0.5)×125 = 120



LIE: Proof for the discrete case

E(E[Y |X ]) =
∑
x

E[Y |X = x ]p(x)

=
∑
x

(∑
y

yp(y |x)

)
p(x)

=
∑
x

∑
y

yp(x , y)

=
∑
y

y
∑
x

p(x , y)

=
∑
y

yp(y)

= E(Y )
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LIE: Proof for the continuous case

E[E(Y |X )] =

∫
E(Y |X = u)gx(u)du

=

∫ [∫
tfy |x(t|X = u)dt

]
gx(u)du

=

∫ ∫
tfy |x(t|X = u)gx(u)dudt

=

∫
t

[∫
fy |x(t|X = u)gx(u)du

]
dt

=

∫
t [fx ,ydu] dt

=

∫
tgy (t)dt

= E(y)
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OLS - As minimizing residuals

� Data with n observations and two variables: (x1, ...xn) and (y1, ..., yn)

� Find the line (β̂0 + β̂1x) that best fits the data

� ŷi = β̂0 + β̂1xi is the fitted value for i

� The residual is ûi = yi − ŷi

� Goal: minimize residuals or distance from the line (fitted values) to the data
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OLS - As minimizing residuals

� We don’t care if the residual ûi is positive or negative, we want it to be small

� So we square it: ûi
2

� Why not the absolute value? Good statistical reasons + harder to work with | · |

� We want all the mistakes to be small, so we really want to minimize
∑n

i=1 ûi
2
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OLS - As minimizing residuals

min
β̂0,β̂1

n∑
i=1

ûi
2 =

n∑
i=1

(yi − ŷi )
2 =

n∑
i=1

(
yi − β̂0 + β̂1xi

)2

� Using calculus (deriving with respect to β̂0, β̂1 and equating to zero):

β̂1
∗

=

∑n
i=1(xi − xi )(yi − yi )∑n

i=1(xi − xi )2
=

1
n

∑n
i=1(xi − xi )(yi − yi )
1
n

∑n
i=1(xi − xi )2

=
Sample covariance (x,y)

Sample variance (x)

β̂0
∗

= yi − β̂1xi
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Visual tour of OLS

� https://ryansafner.shinyapps.io/ols estimation by min sse/

� https://seeing-theory.brown.edu/regression-analysis/

index.html#section1

� https://setosa.io/ev/ordinary-least-squares-regression/

� https://mgimond.github.io/Stats-in-R/regression.html

https://ryansafner.shinyapps.io/ols_estimation_by_min_sse/
https://seeing-theory.brown.edu/regression-analysis/index.html#section1
https://seeing-theory.brown.edu/regression-analysis/index.html#section1
https://setosa.io/ev/ordinary-least-squares-regression/
https://mgimond.github.io/Stats-in-R/regression.html


OLS as an estimator

� There is a population with two random variables x and y

� We take a random sample of size n: (x1, x2, ..xn) and (y1, y2, ..., yn)

� We would like to see how y varies with changes in x

� What if y is affected by factors other than x?

� What is the functional form connecting these two variables?

� If interested in causal effect of x on y , how to distinguish from mere correlation?

20



OLS as an estimator of the DGP parameters

� Assume the data generating proces (DGP)s is:

yi = β0 + β1xi + ui

� That is, this model holds in the population

� Not only xi affects yi , ui (called the error term) also does

� Do not confuse ui with ûi

� We assume there is a linear relationship between yi and xi

� We never observe β0 and β1
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Inference

� Goal: Estimate unknown parameters

� To approximate parameters, we use an estimator, which is a function of the data

� Thus, estimator is a random variable (it is a function of a random variable)

� Infer something about the parameters from the distribution of the estimator
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Important notation

Based on this tweet: https://twitter.com/nickchk/status/1272993322395557888

� Greek letters (e.g., µ) are the truth (i.e., parameters of the true DGP)

� Greek letters with hats (e.g., µ̂) are estimates (i.e., what we think the truth is)

� Non-Greek letters (e.g., X ) denote sample/data

� Non-Greek letters with lines on top (e.g., X ) denote calculations from the data

� We want to estimate the truth, with some calculation from the data (µ̂ = X )

� Data −→ Calculations −→ Estimate −→︸︷︷︸
Hopefully

Truth

� Example: X −→ X −→ µ̂ −→︸︷︷︸
Hopefully

µ
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OLS as an estimator of the DGP parameters

� Assume the data generating process is:

yi = β0 + β1xi + ui

� Also assume Eui = 0

� Without loss of generality

� We can just change the intercept to force Eui = 0

� For example if Eui = α0

� Redefine model to yi = β0 + α0︸ ︷︷ ︸
new intercept

+β1xi + ui − α0︸ ︷︷ ︸
new error term

� Assume mean independence E(ui |xi ) = E(ui ) for all values x

� This is a non-trivial assumption, but let’s take it for granted for now

� Implies that E(ui |x) = E(ui ) = 0

� Implies that E(uixi ) = E(E(ui |xi )) = 0
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OLS as an estimator of the DGP parameters

� E(yi |xi ) = β0 + β1xi

� E(yi |xi ): population regression function or conditional expectation function

� By our assumptions:

� E(ui |xi ) = E(yi − β0 − β1xi ) = 0

� E(uixi ) = E(x(yi − β0 − β1xi )) = 0

� These two conditions determine β0 and β1
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OLS as an estimator of the DGP parameters

First equation

E(yi − β0 − β1xi ) = 0

Eyi − β0 − β1Exi = 0

Eyi − β1Exi = β0
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OLS as an estimator of the DGP parameters

Second equation

Exi (yi − β0 − β1xi ) = 0

Exi (yi − (Eyi − β1Exi )− β1xi ) = 0

Exi (yi − Eyi − β1(xi − Exi )) = 0

Exi (yi − Eyi ) = Exiβ1(xi − Exi )

E(xi − Exi )(yi − Eyi ) = β1E(xi − Exi )(xi − Exi )
E(xi − Exi )(yi − Eyi )
E(xi − Exi )(xi − Exi )

= β1

Population covariance (x,y)

Population variance (x)
= β1
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OLS as an estimator of the DGP parameters

� But we don’t have x and y , nor do we know Eyi or Exi

� We only have a random sample of size n: (x1, ..., xn) and (y1, ..., yn)

� The sample analogs:

�
1
n

∑n
i=1(yi − β̂0 − β̂1xi ) = 0

�
1
n

∑n
i=1 xi (yi − β̂0 − β̂1xi ) = 0
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OLS as an estimator of the DGP parameters

First equation

1

n

n∑
i=1

(yi − β̂0 − β̂1xi ) = 0

1

n

n∑
i=1

yi − β̂0 − β̂1
1

n

n∑
i=1

xi = 0

yi − β̂0 − β̂1xi = 0

yi − β̂1xi = β̂0
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OLS as an estimator of the DGP parameters

Second equation

1

n

n∑
i=1

xi (yi − β̂0 − β̂1xi ) = 0

1

n

n∑
i=1

xi (yi −
(
yi − β̂1xi

)
− β̂1xi ) = 0

1

n

n∑
i=1

xi (yi − yi + β̂1(xi − xi )) = 0

1

n

n∑
i=1

xi (yi − yi ) =
1

n

n∑
i=1

xi (β̂1(xi − xi ))

1

n

n∑
i=1

(xi − xi )(yi − yi ) = β̂1
1

n

n∑
i=1

(xi − xi )(xi − xi )

1
n

∑n
i=1(xi − xi )(yi − yi )
1
n

∑n
i=1(xi − xi )2

= β̂1

Sample covariance (x,y)

Sample variance (x)
= β̂1 30



OLS as an estimator of the DGP parameters

� Formulas are the same as “minimizing residuals”

� Show the OLS coefficients as estimator of the population parameters (β0 and β1)

� Some remarks:

� Can only estimate if the sample variance of xi is not zero

� In other words, if xi is not constant across all values of i

� Intuitively, the variation in x is what permits us to identify its impact in y
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Multiple regression – notation

� Consider the multiple linear regression model

yi = x ′iβ + ui

where β = (β0, β1, ..., βK )′ and xi = (1, ..., xK )′

� β is of size (k × 1)

� xi is of size (k × 1)

� x ′i β is of size (1× k)(k × 1) = 1× 1

� Equivalent

y = Xβ + u

where β = (β0, β1, ..., βK )′

� β is of size (k × 1)

� X is of size (n × k)

� Xβ is of size (n × k)(k × 1) = n × 1
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Multiple regression

� Consider the multiple linear regression model

yi = x ′iβ + ui

� x ′iβ = β0 +
∑K

k=1 xikβk is the conditional expectation function (E(yi |xi ))

� The population regression β coefficients solve

β = E[xixi
′]−1E[xiyi ] = arg min

b
E
[
(yi − x ′i b)2

]
� The sample equivalent is

β̂ =
1
n

∑n
i=1(xiyi )

1
n

∑n
i=1(xix ′i )

=

∑n
i=1(xiyi )∑n
i=1(xix ′i )

= (X ′X )−1X ′y
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Solving for β̂

� We let the computer do the calculations, which are tedious even for small n

� Good to know what’s going on behind the scenes

� But I honestly do not care if you know how invert a matrix
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Simulations!

alpha=1 #intercept

beta=2 #slope

Nobs=10000 #how many observations?

X=runif(Nobs ,-5,5)

#use the DGP to generate data

Y=alpha+beta*X+rnorm(Nobs)

OLS=lm(Y~X)

summary(OLS)
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Our estimate of the coefficient are pretty close to the truth
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But how close on average?

#Now lets repeat the process and see how close our estimates are

Reps=1000

alpha_estimate=NULL

beta_estimate=NULL

for(r in 1:Reps){

X=runif(Nobs ,-5,5)

#use the DGP to generate data

Y=alpha+beta*X+rnorm(Nobs)

OLS=lm(Y~X)

Estimates=summary(OLS)$coef[,"Estimate"]

alpha_estimate=c(alpha_estimate ,Estimates[1])

beta_estimate=c(beta_estimate ,Estimates[2])

}

hist(beta_estimate ,freq=F,breaks=30,

main="",las=1,xlab="Estimate of beta")

abline(v=beta ,col=’red’,lwd=2,lty=2)
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Distribution of estimate of β̂

Estimate of beta

D
en

si
ty

1.990 1.995 2.000 2.005 2.010

0

50

100
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Conditional expectation function (CEF)

� Assume we are interested in the returns to schooling

� Summarize the effect of schooling on wages with the CEF (E(yi |xi ))

� The CEF is the expectation (i.e, population average) of yi with xi held constant

� E(yi |xi ) provides a reasonable representation of how y changes with x

� Because xi is random, E[yi | xi ] is random

� Sometimes work with a particular value of the CEF (e.g., E[yi | xi = 12])
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Property 1: CEF Decomposition Property

� yi = E(yi |xi ) + ui where

1. ui is mean independent of xi ; that is E(ui |xi ) = 0

2. ui is uncorrelated with any function of xi

� In words: any random variable, yi , can be decomposed into two parts: the part

that can be explained by xi and the part left over that cannot be explained by xi

� Proof is in Angrist and Pischke (ch. 3)
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Property 2: CEF Prediction Property

� Let m(xi ) be any function of xi

� E(yi |xi ) = arg minm(xi )E[(yi −m(xi ))2]

� In words: The CEF is the minimum mean squared error predictor of yi given xi

� Proof is in Angrist and Pischke (ch. 3)
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Property 3: Best linear approximation

� The population regression is the best linear approximation to the true nonlinear

CEF in a mean squared error sense:

β = E[xixi
′]−1E[xiyi ] = arg min

b
E[(E[yi | xi ]− x ′i b)2]

� In words: even if the true CEF is nonlinear (for example, E [yi | xi ] = log(xi )),

regression is still a good approximation to the truth
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Why linear regression may be of interest (summary)

� If the CEF is linear. Then the population regression is it

� Then it makes the most sense to use linear regression to estimate it

� Linear regression may be interesting even if the underlying CEF is not linear

� E(yi |xi ), is the minimum mean squared error predictor of yi given xi in the class of

all functions of xi

� The population regression function is the best we can do in the class of all linear

functions to approximate E(yi |xi )
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Big picture

1. Regression provides the best linear predictor for the dependent variable in the

same way that the CEF is the best unrestricted predictor of the dependent variable

2. If we prefer to think of approximating E(yi |xi ) as opposed to predicting yi , even if

the CEF is nonlinear, regression provides the best linear approximation to it
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Residuals add up to zero

� Remembering how the first moment condition allows us to obtain β̂0 and β̂1:

1

n

n∑
i=1

(yi − β̂0 − β̂1xi ) = 0

� This means the OLS residuals always add up to zero, by construction,

1

n

n∑
i=1

ûi = 0

n∑
i=1

ûi = 0



The mean of the fitted values is the mean of the data

Because yi = ŷi + ûi by definition,

n∑
i=1

yi =
n∑

i=1

ŷi +
n∑

i=1

ûi

1

n

n∑
i=1

yi =
1

n

n∑
i=1

ŷi

y = ŷ



Sample correlation between xi and residuals is zero

Similarly the way we obtained our estimates,

1

n

n∑
i=1

xi (yi − β̂0 − β̂1xi ) = 0 (1)

The sample covariance (and therefore the sample correlation) between the explanatory

variables and the residuals is always zero:

1

n

n∑
i=1

xi ûi = 0 (2)
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Bringing things together

Because the ŷi are linear functions of the xi , the fitted values and residuals are

uncorrelated, too:

1

n

n∑
i=1

ŷi ûi = 0 (3)
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The point (x , y) is always on the OLS regression line

If we plug in the average for x , we predict the sample average for y :

y = β̂0 + β̂1x (4)

(see formula for β̂0)
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Nobs=1000 #how many observations?

X=runif(Nobs ,-5,5)

#use the DGP to generate data

Y=10+2*X^2+rnorm(Nobs)

OLS=lm(Y~X)

summary(OLS)

plot(X,Y,bty="L")

abline(OLS ,col=2,lwd=2,lty=2)

points(mean(X),mean(Y),pch=19,col=4,cex=1.5)

#Not a great fit...yet

#residual add to zero

sum(OLS$residuals)

#mean of fitted values is the mean of true values

mean(OLS$fitted.values)-mean(Y)

#sample covariance between X and residuals is zero

sum(OLS$residuals*X)

#sample covariance between fitted values and residuals is zero

sum(OLS$residuals*OLS$fitted.values)
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Algebraic properties
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Big picture

Don’t let anyone tell you the model is good because any of the following happens

1. Residuals add to zero

2. Fitted values mean is equal to data mean

3. Residuals are uncorrelated with x

4. If we plug in the average for x , we predict the sample average for y

These results are mechanical: Unrelated to how appropriate the model is or “causality”
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Expected Value of OLS

� Mathematical statistics: How do our estimators behave across different samples of

data? On average, would we get the right answer if we could repeatedly sample?

� Find the expected value of the OLS estimators – the average outcome across all

possible random samples – and determine if we are right on average

� Leads to the notion of unbiasedness, a “desirable” characteristic for estimators.

E(β̂) = β (5)



Don’t forget why we’re here

� The population parameter that describes the relationship between y and x is β

� Goal: estimate β with a sample of data

� β̂ is an estimator obtained with a specific sample from the population



Uncertainty and sampling variance

� Different samples will generate different estimates (β̂) for the “true” β

� Thus, β̂ a random variable (depends on random samples)

� Unbiasedness is the idea that if we could take as many random samples on y as

we want from the population, and compute an estimate each time, the average of

these estimates would be equal to β

� But, this also implies that β̂ has spread and therefore variance



Assumption 1 (Linear in Parameters)

� The population model can be written as

y = Xβ + u (6)

where β are the (unknown) population parameters

� We view X and u as outcomes of random variables; thus, y is random

� Our goal is to estimate β

� u is the unobserved error. It is not the residual that we compute from the data!



Assumption 2 (Random Sampling)

� We have a random sample of size n, {(xi , yi ) : i = 1, ..., n}

� We know how to use this data to estimate β by OLS



Assumption 3 (Zero Conditional Mean)

� In the population, the error term has zero mean given any value of X :

E(u|X ) = E(u) = 0. (7)

� This is the key assumption for showing that OLS is unbiased, with the zero value

not being important once we assume E(u|X ) does not change with X



Assumption 1-3

� We can compute the OLS estimates whether or not these assumption hold

� But we might not get a “good” estimate



Assumption 4 (Sample Variation in the Explanatory Variable)

� The sample outcomes on xi are not all the same value

� Same as saying the sample variance of {xi : i = 1, ..., n} is not zero

� If the xi are all the same value, we cannot learn how x affects y



Showing OLS is unbiased

� How do we show β̂ is unbiased for β?

� We know β̂ = (X ′X )−1X ′y

� And that y = Xβ + u (by assumption 1)

� Therefore: β̂ = (X ′X )−1X ′(Xβ + u) = β + (X ′X )−1X ′u

� E(β̂ | X ) = β + E(X ′X )−1X ′ E(u | X )︸ ︷︷ ︸
=0 by assumption 3

� E(β̂ | X ) = β



� Each sample leads to a different estimate, β̂

� Some will be very close to the true values β

� Some could be very far from those values

� If we repeat the experiment and average the estimates → very close to β

� But in a single sample, we can never know whether we are close to β

� Next: measure of dispersion (spread) in the distribution of the estimators



Repeat our simulations with different N

alpha=1 #intercept

beta=2 #slope

Reps=1000

for(Nobs in c(100,1000,10000)){

alpha_estimate=NULL

beta_estimate=NULL

for(r in 1:Reps){

X=runif(Nobs ,-5,5)

Y=alpha+beta*X+rnorm(Nobs)

OLS=lm(Y~X)

Estimates=summary(OLS)$coef[,"Estimate"]

alpha_estimate=c(alpha_estimate ,Estimates[1])

beta_estimate=c(beta_estimate ,Estimates[2])

}

hist(beta_estimate ,freq=F,breaks=30,main="",las=1)

abline(v=beta ,col=’red’,lwd=3,lty=1)

} 70



Repeat our simulations with different N — Look at the x-axis scale
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Reminder

� Errors are the vertical distances between observations and the unknown

Conditional Expectation Function. Therefore, they are unknown.

� Residuals are the vertical distances between observations and the estimated

regression function. Therefore, they are known.



Variance of OLS estimators

The correct variance estimation procedure is given by the structure of the data

� It is very unlikely that all observations in a dataset are unrelated, but drawn from

identical distributions (homoskedasticity)

� For instance, the variance of income is often greater in families belonging to top

deciles than among poorer families (heteroskedasticity)

� Some phenomena do not affect observations individually, but they do affect

groups of observations uniformly within each group (clustered data)



Assumption 5 (Homoskedasticity, or Constant Variance)

The error has the same variance given any value of the explanatory variable x :

Var(u|X ) = σ2 > 0 (8)

where σ2 is (virtually always) unknown.

Because E(u|x) = 0 we can also write

E(u2|x) = σ2 = E(u2) (9)



Assumption 5 (Homoskedasticity, or Constant Variance)

Under the our assumptions

y = Xβ + u

E(y |x) = Xβ

Var(y |x) = σ2

The average or expected value of y is allowed to change with x , but the variance does

not change with x



Assumption 5 (Homoskedasticity, or Constant Variance)



Variance of OLS estimators In matrix form the property that V (aW ) = a2V (W )

where a is constant and W is a random variable is written as:

V (AW ) = AV (W )A′

where A is a constant matrix and W is a random variable



Variance of OLS estimators

� We know β̂ = (X ′X )−1X ′y

� And that y = Xβ + u (by assumption 1)

� Therefore: β̂ = (X ′X )−1X ′(Xβ + u) = β + (X ′X )−1X ′u

� V (β̂ | X ) = V (β | X )︸ ︷︷ ︸
=0since it’s constant

+(X ′X )−1X ′ V (u | X )︸ ︷︷ ︸
=σ2 by assumption 3

X (X ′X )−1

� V (β̂ | X ) = (X ′X )−1X ′σ2X (X ′X )−1 = σ2(X ′X )−1



Estimating the Error Variance

� In the formula

V (β̂ | X ) = (X ′X )−1X ′σ2X (X ′X )−1 = σ2(X ′X )−1

we can compute (X ′X )−1 but we need to estimate σ2

� Recall that

σ2 = E(u2)



Estimating the Error Variance

� If we could observe the errors (ui ) an unbiased estimator of σ2 would be

1

n

n∑
i=1

u2
i (10)

� But this not a feasible estimator because the ui are unobserved

� How about replacing each ui with its “estimate”, the OLS residual ûi?

ui = yi − x ′iβ

ûi = yi − x ′i β̂



Estimating the Error Variance

ûi can be computed from the data, but ûi 6= ui for any i :

ûi = yi − x ′i β̂ = x ′iβ + ui − x ′i β̂

= ui − (β̂ − β)xi

E(β̂) = β but the estimators differ from the population values in a given sample



Estimating the Error Variance

� Now, what about this as an estimator of σ2?

1

n

n∑
i=1

û2
i (11)

� It is a feasible estimator and easily computed from the data after OLS

� As it turns out, this estimator is slightly biased



Estimating the Error Variance

The estimator does not account for the restrictions on the residuals, used to obtain β̂

n∑
i=1

ûi = 0

n∑
i=1

x1i ûi = 0

...
n∑

i=1

xki ûi = 0

There is no such restriction on the unobserved errors



Estimating the Error Variance

The unbiased estimator of σ2 uses a degrees-of-freedom adjustment The residuals

have only n − k degrees-of-freedom (minus the k restrictions), not n

σ̂2 =

∑n
i=1 û

2
i

(n − k)

THEOREM: Unbiased Estimator of σ2

Under Assumptions 1-5,

E(σ̂2) = σ2



� Given σ̂, we can now estimate V (β̂)

� V (β̂) is a variance-covariance matrix (size k × k)

� The diagonal elements of V (β̂) give us the variance of the estimators β̂

� σ̂
β̂

: The square root of the diagonal elements of the estimator of V (β̂) is usually

called the standard errors (i.e., estimate of the standard deviation of the

estimator)



Bringing the central limit theorem to play

� By some version of the central limit theorem:

β̂ − β
σβ

→d N(0, 1)

β̂ →d σβN(0, 1) + β

β̂ →d N(β, σ2
β)

� σβ = σ2(X ′X )−1

� Since we do not know σ2, we estimate it

� σ̂
β̂

= σ̂2(X ′X )−1

� By some version of the central limit theorem + some statistical properties

β̂ − β
σ̂
β̂

→d tn−k

β̂ →d σ̂
β̂
tn−k + β



To keep things simple

� tn−k → N(0, 1) as (n − k)→∞

� So as long as your sample is large, we can keep thinking of normal distributions

β̂ ≈ N(β, σ̂
β̂

)



31.7% of estimates will be more than σ̂β̂ away from β

β − 2σ β − 1σ β β + σ β + 2σ
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4.55% of estimates will be more than 2σ̂β̂ away from β

β − 2σ β − 1σ β β + σ β + 2σ

89



We can know learn something about the true β

� We know β̂ ∼ N(β, σ̂
β̂

)

� We want to find some interval on which β is likely to live:

P (a ≤ β ≤ b) = 1− α

� P (−a ≥ −β ≥ b) = 1− α

� P


β̂−a
σ̂
β̂
≥ β̂ − β

σ̂
β̂︸ ︷︷ ︸

standard normal
(tn−k to be exact)

≥ β̂−b
σ̂
β̂

 = 1− α

� Assuming we want symmetry (so α
2 on each side), then:

� Φ
(

β̂−a
σ̂
β̂

)
= 1− α

2

� Φ
(

β̂−b
σ̂
β̂

)
= α

2



Confidence interval

� Thus:

� Φ−1
(
α
2

)
= β̂−b

σ̂
β̂

� Φ−1
(
1− α

2

)
= β̂−a

σ̂
β̂

� b = β̂ − Φ−1
(
α
2

)
σ̂β̂

� a = β̂ − Φ−1
(
1− α

2

)
σ̂β̂

� β is between β̂ − Φ−1
(
1− α

2

)
σ̂
β̂

and β̂ − Φ−1
(
α
2

)
σ̂
β̂

with probability 1− α
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Confidence interval

� Say α = 5%, then Φ−1
(
α
2

)
= −1.96 and Φ−1

(
1− α

2

)
= 1.96

� Then we know β is between with probability 95%:

� β̂ − 1.96σ̂β̂

� β̂ + 1.96σ̂β̂

� Generally speaking, confidence intervals are wider, the smaller α is
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Simulations!

b e t a 0=1 #i n t e r c e p t

b e t a 1=2 #s l o p e

#Now l e t s r e p e a t t h e p r o c e s s and s e e how c l o s e our e s t i m a t e s a r e

Reps=1000

Nobs=100 #number o f obs

b e t a 0 e s t i m a t e=NULL #v e c t o r to s t o r e e s t i m a t e s o f b e t a 0

b e t a 1 e s t i m a t e=NULL #v e c t o r to s t o r e e s t i m a t e s o f b e t a 1

E s t i m a t e I n C I=NULL #v e c t o r to s t o r e whether e s t i m a t e i s i n CI

LowerCI=NULL #v e c t o r to s t o r e l o w e r bound CI

UpperCI=NULL #v e c t o r to s t o r e upper bound CI

C o n f i d e n c e l e v e l=0 . 05 #a l p h a

f o r ( r i n 1 : Reps ){
X=r u n i f ( Nobs,−5 , 5 )

Y=b e t a 0+b e t a 1*X+rnorm ( Nobs ) #use t h e DGP to g e n e r a t e data

OLS=lm (Y˜X)

E s t i m a t e s=summary (OLS)$ c o e f [ , ” E s t i m a t e ” ] #e s t i m a t e

SE=summary (OLS)$ c o e f [ , ” Std . E r r o r ” ] #e s t i m a t e s igma b e t a

b e t a 0 e s t i m a t e=c ( b e t a 0 e s t i m a t e , E s t i m a t e s [ 1 ] )

b e t a 1 e s t i m a t e=c ( b e t a 1 e s t i m a t e , E s t i m a t e s [ 2 ] )

CI Beta lowerbound=E s t i m a t e s [ 2]+qnorm ( C o n f i d e n c e l e v e l /2 )*SE [ 2 ] #C o n f i d e n c e i n t e r v a l s

LowerCI=c ( LowerCI , CI Beta lowerbound )

CI Beta upperbound=E s t i m a t e s [ 2]+qnorm ( 1−C o n f i d e n c e l e v e l /2 )*SE [ 2 ]

UpperCI=c ( UpperCI , CI Beta upperbound )

DummyInCI=(CI Beta lowerbound<b e t a 1 & CI Beta upperbound>b e t a 1 ) #I s t h e t r u e v a l u e i n CI ?

E s t i m a t e I n C I=c ( E s t i m a t e I n C I , DummyInCI )

}
mean ( E s t i m a t e I n C I ) 93



First ten simulations (red line is true β)
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Test hypothesis

� Is β 6= β0?

� Usually posed as testing H0 : β = β0 vs Ha : β 6= β0

� Different way to look at this: is β0 is in the confidence interval of β?

� Confidence interval depends on our choice of α

� Pick largest α for which β0 is not in the confidence interval

� This is called the p − value

� Largest probability of obtaining results at least as extreme as those actually

observed, under the assumption that the null hypothesis is correct
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Simulations!

#### p−v a l u e s

b e t a 0=1 #i n t e r c e p t

b e t a 1=2 #s l o p e

#Now l e t s r e p e a t t h e p r o c e s s and s e e how c l o s e our e s t i m a t e s a r e

Reps=1000

Nobs=1000 #number o f obs

p v a l u e b e t a 0=NULL #v e c t o r to s t o r e whether 0 i s i n CI

p v a l u e b e t a 2=NULL #v e c t o r to s t o r e whether 2 i s i n CI

C o n f i d e n c e l e v e l=0 . 05 #a l p h a

f o r ( r i n 1 : Reps ){
X=r u n i f ( Nobs,−5 , 5 )

#use t h e DGP to g e n e r a t e data

Y=b e t a 0+b e t a 1*X+rnorm ( Nobs )

OLS=lm (Y˜X)

E s t i m a t e s=summary (OLS)$ c o e f [ , ” E s t i m a t e ” ] #e s t i m a t e

SE=summary (OLS)$ c o e f [ , ” Std . E r r o r ” ] #e s t i m a t e s igma b e t a

b e t a 0 e s t i m a t e=c ( b e t a 0 e s t i m a t e , E s t i m a t e s [ 1 ] )

b e t a 1 e s t i m a t e=c ( b e t a 1 e s t i m a t e , E s t i m a t e s [ 2 ] )

#C o n f i d e n c e i n t e r v a l s

CI Beta lowerbound=E s t i m a t e s [ 2]+qnorm ( C o n f i d e n c e l e v e l /2 )*SE [ 2 ]

CI Beta upperbound=E s t i m a t e s [ 2]+qnorm ( 1−C o n f i d e n c e l e v e l /2 )*SE [ 2 ]

#I s 0 i n CI ?

p v a l u e b e t a 0=c ( p v a l u e b e t a 0 , ( CI Beta lowerbound<0 & CI Beta upperbound>0 ) )

#I s 2 i n CI ?

p v a l u e b e t a 2=c ( p v a l u e b e t a 2 , ( CI Beta lowerbound<2 & CI Beta upperbound>2 ) )

}
mean ( p v a l u e b e t a 0 )

mean ( p v a l u e b e t a 2 )
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OLS

� β̂ = (X ′X )−1X ′y

What’s going on behind the scenes?
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Simple case

� Relationship between outcome Yi and treatment indicator Ti

� Regress the outcome on the treatment indicator, and a constant

� Xi =
(

1 Ti

)
� Assume first NT units are treated (NC = N − NT units are untreated)

� X =



1 T1

1 T2
...

1 TNT

1 TNT +1
...

1 TN


=



1 1

1 1
...

...

1 1

1 0
...

...

1 0


100



Simple case

� (X ′X ) =

(
1 1 · · · 1 1 · · · 1
1 1 · · · 1 0 · · · 0

)


1 1

1 1
...

...

1 1

1 0
...

...

1 0


=

(
N NT

NT NT

)

� (X ′X )−1 = 1
NT (N−NT )

(
NT −NT

−NT N

)
= 1

NC

(
1 −1

−1 N
NT

)
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Simple case

� X ′y =

(
1 1 · · · 1 1 · · · 1
1 1 · · · 1 0 · · · 0

)


Y1

Y2
...

YNT

YNT +1
...

YN


=

(∑N
i=1 Yi∑NT
i=1 Yi

)
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Simple case

(X ′X )−1X ′y =
1

NC

(
1 −1

−1 N
NT

)(∑N
i=1 Yi∑NT
i=1 Yi

)

=
1

NC

( ∑N
i=1 Yi −

∑NT
i=1 Yi

N
NT

∑NT
i=1 Yi −

∑N
i=1 Yi

)

=
1

NC

( ∑
C Yi

N
NT

∑
T Yi −

∑
T Yi −

∑
C Yi

)

=
1

NC

( ∑
C Yi

N−NT
NT

(
∑

T Yi )−
∑

C Yi

)

=

(
YC

YT − YC

)
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Simple case
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Simple case
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Simple case

(X ′X )−1X ′y =

(
YC

YT − YC

)

� The OLS estimate of the intercept is YC

� The coefficient of the treatment dummy is YT − YC
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Simple case

(X ′X )−1X ′y =

(
YC

YT − YC

)

� The OLS estimate of the intercept is YC

� The coefficient of the treatment dummy is YT − YC
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How precise are these estimates?

� What is the variance of β̂ = (X ′X )−1X ′y

� Recall Y = Xβ + u

� β̂ = (X ′X )−1X ′(Xβ + u)

� β̂ = (X ′X )−1X ′Xβ + (X ′X )−1X ′u

� β̂ = β + (X ′X )−1X ′u

� If E(uX ) = 0

� V (β̂) = (X ′X )−1X ′V (u)X (X ′X )−1 [matrix version of V (b + aY ) = a2Y ]

� If V (ε) = σ2I [Homoskedasticity] then

� V (β̂) = (X ′X )−1X ′σ2IX (X ′X )−1 = σ2(X ′X )−1X ′X (X ′X )−1 = σ2(X ′X )−1

� V (β̂) = σ2 1
NT (N−NT )

(
NT −NT

−NT N

)
= σ2

NC

(
1 −1

−1 N
NT

)
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How precise are these estimates?

� V (β̂) = σ2

(
1
NC

− 1
NC

− 1
NC

N
NTNC

)

� Let NT = κN and NC = (1− κ)N

� Since we don’t know σ2, use 1
N−1 (Y − Ŷ )2 = 1

N−1 (û)2 as an estimator
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Simulations!

N=100 #Number of individuals

mu0=1

s.sq=1

beta=0.2

#Let ’s create potential outcomes

Y0 <- rnorm(n=N, mean=mu0, sd=s.sq) # control potential outcome

Y1 <- Y0 + beta # treatment potential outcome

#Lets randomly assign people to treatment

Z.sim <- rbinom(n=N, size=1, prob=.5) # Do a random assignment

Y.sim <- Y1*Z.sim + Y0*(1-Z.sim) # Reveal outcomes according to assignment

OLS=lm(Y.sim~Z.sim)

summary(OLS)
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OLS estimator
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How precise are these estimates?

� Standard error of the intercept is:
√
σ̂ 1
NC

� Standard error of the slope is:
√
σ̂ N
NTNC

� This should tell us how much our estimates vary on different samples

sqrt(sum(OLS$residuals^2)/(N-2)*(1/sum(Z.sim==0)))

sqrt(sum(OLS$residuals^2)/(N-2)*(N/(sum(Z.sim==0)*sum(Z.sim==1))))
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Simulations!

N=100 #Number of individuals

mu0=1

s.sq=1

beta=0.2

Reps=1000

estimate_vector=NULL

for(r in 1:Reps){

Y0 <- rnorm(n=N, mean=mu0, sd=s.sq) # control potential outcome

Y1 <- Y0 + beta # treatment potential outcome

Z.sim <- rbinom(n=N, size=1, prob=.5) # Do a random assignment

Y.sim <- Y1*Z.sim + Y0*(1-Z.sim) # Reveal outcomes according to assignment

OLS=lm(Y.sim~Z.sim)

beta_estimate=summary(OLS)$coef[2,1]

estimate_vector=c(estimate_vector ,beta_estimate)

}

sd(estimate_vector)
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Big picture

� We let the computer do the calculations, which are tedious even for small n

� Good to know what’s going on behind the scenes

� But I honestly do not care if you know how invert a matrix

� Important things in life to understand:

� What β̂ is (an estimator of a parameter we do not observe)

� What the standard error is (the standard deviation of the estimator)

� What a confidence interval is (an interval where we know with some probability the

true estimate lives)

� What a p-value is (largest probability of obtaining results at least as extreme as

those actually observed, under the assumption that the null hypothesis is correct)
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Regression Anatomy Theorem – Frisch–Waugh–Lovell (FWL) theorem

� Assume your main multiple regression model of interest:

yi = β0 + β1x1i + · · ·+ βkxki + · · ·+ βKxKi + ei

� An auxiliary regression in which the variable x1i is regressed on all the remaining

independent variables

x1i = γ0 + γk−1xk−1i + γk+1xk+1i + · · ·+ γKxKi + fi

� x̃1i = x1i − x̂1i is the residual from the auxiliary regression

� The parameter β1 can be rewritten as

β1 =
Cov(yi , x1i )

Var(x1i )
=

Cov(yi , x̃1i )

Var(x̃1i )

� β̂1 is a scaled covariance with the actual data xor with the x̃1 residual
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Regression Anatomy Theorem – Frisch–Waugh–Lovell (FWL) theorem II

� Assume your main multiple regression model of interest:

yi = β0 + β1x1i + · · ·+ βkxki + · · ·+ βKxKi + ei

� Two auxiliary regressions
� x1i is regressed on all the remaining independent variables

x1i = γ0 + γk−1xk−1i + γk+1xk+1i + · · ·+ γKxKi + fi

� yi i is regressed on all the remaining independent variables

yi = α0 + αk−1xk−1i + αk+1xk+1i + · · ·+ αKxKi + gi

� x̃1i = x1i − x̂1i and ỹi = yi − ŷi residuals from auxiliary regressions

� The parameter β1 can be rewritten as

β1 =
Cov(yi , x1i )

Var(x1i )
=

Cov(ỹi , x̃1i )

Var(x̃1i )

� β̂1 is a scaled covariance with the actual data or with the residuals 115



Big picture

� Regression anatomy theorem helps us interpret a single slope coefficient in a

multiple regression model by the aforementioned decomposition

� Also, help us understand “OLS” as a “matching estimator” (try to compare

observations that are alike in the Xs)
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Regression and causality

� When is regression causal? Whenever the CEF that regression approximates (or

equals if the truth is linear) is causal

� Next: discuss one assumption under which the CEF has a causal interpretation
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Potential outcomes - reminder

� A treatment (T ) induces two “potential outcomes” for individual i

� The untreated outcome Y0i

� The treated outcome Y1i

� The observed outcome

Yi =

Y1i if Ti = 1

Y0i if Ti = 0

= Y0i + (Y1i − Y0i )Ti

� The impact for any individual is δi = Y1i − Y0i

� Fundamental problem: Never observe both potential outcomes for the same

individual
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We can’t just compared treated/untreated individuals

� We observe Yi = Y0i + (Y1i − Y0i )︸ ︷︷ ︸
δi=impact

Ti

� If we compare the outcomes of treated and untreated individuals:

E(Yi |Ti = 1)− E(Yi |Ti = 0)︸ ︷︷ ︸
Observed difference

=

E(Y1i |Ti = 1)−E(Y0i |Ti = 1)+

E(Y0i |Ti = 1)− E(Y0i |Ti = 0)

= E(Y1i |Ti = 1)− E(Y0i |Ti = 1)︸ ︷︷ ︸
average treatment effect on the treated

+

E(Y0i |Ti = 1)− E(Y0i |Ti = 0)︸ ︷︷ ︸
selection bias
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Unconfoundedness

Assumption (Unconfoundedness)
(Y1i ,Y0i )

∐
Ti | Xi

In words:

1. Once we condition on observable characteristics Xi , the treatment Ti is as good

as randomly assigned

2. Put differently, within the group of individuals with the same characteristics xi , we

have a randomized experiment

3. Yet another way of saying it is that conditional on xi , the selection bias disappears

Uncounfoundedness is fundamentally untestable and should always be discussed!
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Overlap

� In order to exploit the unconfoundedness assumption, for all values of xi we need

to have both treated and untreated units

� Otherwise, either no treatment or no control group for some values of xi

� Propensity score, which gives us the probability of Ti = 1 given Xi = x

p(x) = P(Ti = 1 | xi = x)

� p(x) = 1 means that there are no control units (everyone is treated)

� p(x) = 0 means that there are no treated units (no one is treated)

Assumption (Overlap)
0 < p(x) < 1 for all x

� In contrast to unconfoundedness, overlap is testable since we can compute p(x)

from the data
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Identification under unconfoundedness

� How can we identify treatment effects under unconfoundedness?

� Define the conditional mean difference as

δx = E [Yi | Ti = 1, xi = x ]− E [Yi | Ti = 0, xi = x ]

� Conditional on xi = x , we can use the same arguments as the experimental case:

δx = E [Yi | Ti = 1, xi = x ]− E [Yi | Ti = 0, xi = x ]

= E [Y1i | Ti = 1, xi = x ]− E [Y0i | Ti = 0, xi = x ]

= E [Y1i | xi = x ]− E [Y0i | xi = x ]

= E [Y1i − Y0i | xi = x ]

� The second equality is well-defined for every x by the overlap assumption

� The third equality is by unconfoundedness
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Identification under unconfoundedness

� δx is the ATE for individuals with charateristics xi = x

� We can get the (unconditional) ATE as

E [δxi ] = E [E [Y1i − Y0i | xi ]]
= E [Y1i − Y0i ]

125



Discrete covariates

� The results so far are rather abstract.

� It is easier to understand the results with discrete covariates xi

� In this case,

E [Y1i − Y0i ] =
∑
x

δxP(xi = x)

� Suppose xi is binary. In this case the formula becomes:

E [Y1i − Y0i ] = δxi=1︸ ︷︷ ︸
mean diff. in group with xi = 1

· P(xi = 1)︸ ︷︷ ︸
fract. with xi = 1

+ δxi=0︸ ︷︷ ︸
mean diff. in group with xi = 0

· P(xi = 0)︸ ︷︷ ︸
fract. with xi = 0

126



An example: causal effect of gender on admissions

Major Admissions Admit Deny Total

A Men 400 200 600

B Men 100 300 400

A Women 50 50 100

B Women 300 100 400

� Ti is gender (Ti = 1 if male and Ti = 0 if female)

� xi = Mi is choice of major

� Unconfoundedness: gender is independent of admission outcomes conditional on

major
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An example: causal effect of gender on admissions

δA = 400/600− 50/100 = 0.166

δB = 100/400− 300/400 = −0.5

P(Mi = A) = (600 + 100)/(1500) = 0.466

P(Mi = B) = (400 + 400)/1500 = 0.533

ATE = 0.167 · 0.47 + (−0.5) · 0.533 = −0.19
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Regression and causality

� Under unconfoundedness, the CEF E [Yi | Ti ,Xi ] has a causal interpretation.

� Thus, a linear regression model has an (approximate) causal interpretation under

unconfoundedness.
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Regression and causality

� If the population regression model is:

Yi = θTi + X ′i β + ui

� Then δx = θ is constant across x and thus ATE = θ
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What if δx is not constant?

Major Admissions Admit Deny Total

A Men 400 200 600

B Men 100 300 400

A Women 50 50 100

B Women 300 100 400
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Simulations!

#Lets create the data

#600 men in A, 400 men in B, 100 women in A, 400 women in B

#code major A as 1 and B as zeroq()

Data=data.frame(AdminExact=c(rep(1,400),rep(0,200),

rep(1,100),rep(0,300),

rep(1,50),rep(0,50),

rep(1,300),rep(0,100)),

Major=c(rep(1,600),rep(0,400),rep(1,100),rep(0,400)),

Treatment=c(rep(1,600),rep(1,400),rep(0,100),rep(0,400)))

summary(lm(AdminExact~Treatment+Major ,subset=Major==1,data=Data))

summary(lm(AdminExact~Treatment+Major ,subset=Major==0,data=Data))

summary(lm(AdminExact~Treatment+Major ,data=Data))
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What if δx is not constant?

� Estimate

Yi = θTi + X ′i β + ui

� Regression yields θ̂ = −0.3 6= ATE = −0.19

� In general, we get the following weighted average

θ =
E(σ2

Ti |Xi
δx)

E(σ2
Ti |Xi

)

� Regression produces a treatment-variance weighted average of δx (proof in Angrist

and Pischke MHE 3.3.1)

� In our case σ2
Ti |Xi

= P(Ti = 1|Xi )(1− P(Ti = 1|Xi ))

� σ2
Ti |Major=A = 600

700
100
700

� σ2
Ti |Major=B = 400

800
400
800
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What if δx is not constant?

� Therefore:

θ̂ =

0.166︷︸︸︷
δA

600
700

100
700︷ ︸︸ ︷

σ2
Ti |Major=A

700
1500︷ ︸︸ ︷

P(Major = A) +

−0.5︷︸︸︷
δB

400
800

400
800︷ ︸︸ ︷

σ2
Ti |Major=B

800
1500︷ ︸︸ ︷

P(Major = B)

σ2
Ti |Major=AP(Major = A) + σ2

Ti |Major=BP(Major = B)

= −0.3
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Big picture

� Beware of what OLS gives you

� Still causal interpretation, even if δx is not constant

� Weighted average of different δx

� Weights depend on the variance!
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Beyond regression

� Regression is only one method to obtain causal effects under uncounfoundedness

� Other popular methods are: matching and inverse probability weighting

� Assumption are the same, they generally yield similar results (but implicit weights

are different)

� A great review is: Recent Developments in the Econometrics of Program

Evaluation by Imbens and Wooldrige (2009)

� Check this out: http://www.nber.org/minicourse3.html
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Some important remarks

(based on Cyrus Samii’s lecture notes)

For most researchers, the math obscures the assumptions. Without an ex-

periment, a natural experiment, a discontinuity, or some other strong design,

no amount of econometric or statistical modeling can make the move from

correlation to causation persuasive. (Sekhon, 2009, p. 503)

� At the end of the day, OLS (and other matching/weighting estimators) “mop up”

imbalances that makes CIA plausible

� Thought experiment necessary to test CIA:

� How could it be that two units that are identical with respect to all meaningful

background factors nonetheless receive different treatment?

� Your answer to this question is your source of identification
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